Discussion of
Rational dividend persistence in banking
by Benoit d’Udekem

Iñaki Aldasoro¹

¹Bank for International Settlements

December 1, 2016

XXV MBF Conference, Rome

Disclaimer: The views presented are those of the author and do not necessarily represent those of the Bank for International Settlements
Overview

- Topical and policy relevant (FRB (2011); BCBS (2011); Shin (2016a, 2016b); Acharya, Le & Shin (2016); Caruana (2016))
- Non-trivial empirical effort, carefully executed, well written
- Three hypotheses
 (H1): ↑ agency conflict ⇒ ↑ likelihood to keep dividend policy
 (H2): during crises, H1 is reversed
 (H3): repurchase/RWA decisions not driven by agency conflicts
- Main model: probit with random effects

\[\text{Prob}(D_{it} = 1) = \Phi \left(\alpha + \tau T_t + \beta X_{it} + \delta D_{it-1} + v_i + \epsilon_{it} \right) \]
Overview

- Topical and policy relevant (FRB (2011); BCBS (2011); Shin (2016a, 2016b); Acharya, Le & Shin (2016); Caruana (2016))
- Non-trivial empirical effort, carefully executed, well written
- Three hypotheses
 - (H1): ↑ agency conflict ⇒ ↑ likelihood to keep dividend policy
 - (H2): during crises, H1 is reversed
 - (H3): repurchase/RWA decisions not driven by agency conflicts
- Main model: probit with random effects
 \[
 \text{Prob}(D_{it} = 1) = \Phi \left(\alpha + \tau T_t + \beta X_{it} + \delta D_{it-1} + v_i + \epsilon_{it} \right)
 \]
Overview

- Topical and policy relevant (FRB (2011); BCBS (2011); Shin (2016a, 2016b); Acharya, Le & Shin (2016); Caruana (2016))
- Non-trivial empirical effort, carefully executed, well written
- Three hypotheses
 - \(H1 \): \(\uparrow \) agency conflict \(\Rightarrow \) \(\uparrow \) likelihood to keep dividend policy
 - \(H2 \): during crises, \(H1 \) is reversed
 - \(H3 \): repurchase/RWA decisions not driven by agency conflicts
- Main model: probit with random effects
 \[
 \text{Prob}(D_{it} = 1) = \Phi \left(\alpha + \tau T_t + \beta X_{it}' + \delta D_{it-1} + u_i + \epsilon_{it} \right)
 \]
Overview

- Topical and policy relevant ([FRB (2011); BCBS (2011); Shin (2016a, 2016b); Acharya, Le & Shin (2016); Caruana (2016)]

- Non-trivial empirical effort, carefully executed, well written

- Three hypotheses
 (H1): ↑ agency conflict → ↑ likelihood to keep dividend policy
 (H2): during crises, H1 is reversed
 (H3): repurchase/RWA decisions not driven by agency conflicts

- Main model: probit with random effects
 \[
 \text{Prob}(D_{it} = 1) = \Phi \left(\alpha + \tau T_t + \beta X_{it} + \delta D_{it-1} + \nu_i + \epsilon_{it} \right)
 \]
Overview

- Topical and policy relevant (FRB (2011); BCBS (2011); Shin (2016a, 2016b); Acharya, Le & Shin (2016); Caruana (2016))
- Non-trivial empirical effort, carefully executed, well written
- Three hypotheses
 (H1): ↑ agency conflict ⇒ ↑ likelihood to keep dividend policy
 (H2): during crises, H1 is reversed
 (H3): repurchase/RWA decisions not driven by agency conflicts
- Main model: probit with random effects
 \[
 \text{Prob}(D_{it} = 1) = \Phi \left(\alpha + \tau T_t + \beta X_{it} + \delta D_{it-1} + u_i + \epsilon_{it} \right)
 \]
Overview

- Topical and policy relevant (FRB (2011); BCBS (2011); Shin (2016a, 2016b); Acharya, Le & Shin (2016); Caruana (2016))
- Non-trivial empirical effort, carefully executed, well written
- Three hypotheses
 - (H1): ↑ agency conflict ⇒ ↑ likelihood to keep dividend policy
 - (H2): during crises, H1 is reversed
 - (H3): repurchase/RWA decisions not driven by agency conflicts
- Main model: probit with random effects
 \[Prob(D_{it} = 1) = \Phi(\alpha + \tau T_t + \beta X_{it} + \delta D_{it-1} + v_i + \epsilon_{it}) \]
Overview

- Topical and policy relevant (FRB (2011); BCBS (2011); Shin (2016a, 2016b); Acharya, Le & Shin (2016); Caruana (2016))
- Non-trivial empirical effort, carefully executed, well written
- Three hypotheses
 (H1): ↑ agency conflict ⇒ ↑ likelihood to keep dividend policy
 (H2): during crises, H1 is reversed
 (H3): repurchase/RWA decisions not driven by agency conflicts
- Main model: probit with random effects
 \[\text{Prob}(D_{it} = 1) = \Phi \left(\alpha + \tau T_t + \beta X_{it}' + \delta D_{it-1} + u_i + \epsilon_{it} \right) \]
Key variable definition (similar for buybacks and RWA)

<table>
<thead>
<tr>
<th>“pay vs omit”</th>
<th>dummy</th>
<th>“maintain vs cut”</th>
<th>dummy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d_{iv_t} > 0$</td>
<td>1</td>
<td>$d_{iv_t} \geq d_{iv_{t-1}}$</td>
<td>1</td>
</tr>
<tr>
<td>$d_{iv_t} = 0$</td>
<td>0</td>
<td>$d_{iv_t} < d_{iv_{t-1}}$</td>
<td>0</td>
</tr>
</tbody>
</table>

- (Residual) # owners, institutional ownership concentration,
- (Residual) # analysts, BHC dummy
- Find support for H1, H2, H3
Key variable definition (similar for buybacks and RWA)

<table>
<thead>
<tr>
<th>“pay vs omit”</th>
<th>dummy</th>
<th>“maintain vs cut”</th>
<th>dummy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$div_t > 0$</td>
<td>1</td>
<td>$div_t \geq div_{t-1}$</td>
<td>1</td>
</tr>
<tr>
<td>$div_t = 0$</td>
<td>0</td>
<td>$div_t < div_{t-1}$</td>
<td>0</td>
</tr>
</tbody>
</table>

(Residual) # owners, institutional ownership concentration,
(Residual) # analysts, BHC dummy

Find support for H1, H2, H3
Key variable definition (similar for buybacks and RWA)

<table>
<thead>
<tr>
<th>“pay vs omit”</th>
<th>dummy</th>
<th>“maintain vs cut”</th>
<th>dummy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$div_t > 0$</td>
<td>1</td>
<td>$div_t \geq div_{t-1}$</td>
<td>1</td>
</tr>
<tr>
<td>$div_t = 0$</td>
<td>0</td>
<td>$div_t < div_{t-1}$</td>
<td>0</td>
</tr>
</tbody>
</table>

(Residual) # owners, institutional ownership concentration, (Residual) # analysts, BHC dummy

Find support for H1, H2, H3
Main comments

- **Rationale for RE: invariability of ownership concentration & BHC**
 - Show it!
 - Why not use Herfindahl?
 - Kripfganz & Schwarz (2015): estimation with time-invariant regressors
 - Interact BHC with other variables? For instance, if agency conflict higher for BHC, couldn’t this also be seen via interaction terms?
 - With FE presumably better able to control for certain things

- BHC = 84% of sample: Better to make distinction between BHC w/wo BD subsidiaries (Acharya, Le & Shin (2016))?

- Not obvious binary model is better than continuous (re results in Table 7)
Main comments

- Rationale for RE: invariability of ownership concentration & BHC
 - Show it!
 - Why not use Herfindahl?
 - Kripfganz & Schwarz (2015): estimation with time-invariant regressors
 - Interact BHC with other variables? For instance, if agency conflict higher for BHC, couldn’t this also be seen via interaction terms?
 - With FE presumably better able to control for certain things
- BHC = 84% of sample: Better to make distinction between BHC w/wo BD subsidiaries (Acharya, Le & Shin (2016))?
- Not obvious binary model is better than continuous (re results in Table 7)
Main comments

- Rationale for RE: invariability of ownership concentration & BHC
 - Show it!
 - Why not use Herfindahl?
 - Kripfganz & Schwarz (2015): estimation with time-invariant regressors
 - Interact BHC with other variables? For instance, if agency conflict higher for BHC, couldn’t this also be seen via interaction terms?
 - With FE presumably better able to control for certain things

- BHC = 84% of sample: Better to make distinction between BHC w/wo BD subsidiaries (Acharya, Le & Shin (2016))?
- Not obvious binary model is better than continuous (re results in Table 7)
Main comments

- Rationale for RE: invariability of ownership concentration & BHC
 - Show it!
 - Why not use Herfindahl?
 - *Kripfganz & Schwarz (2015)*: estimation with time-invariant regressors
 - Interact BHC with other variables? For instance, if agency conflict higher for BHC, couldn’t this also be seen via interaction terms?
 - With FE presumably better able to control for certain things

- BHC = 84% of sample: Better to make distinction between BHC w/wo BD subsidiaries (*Acharya, Le & Shin (2016)*)?

- Not obvious binary model is better than continuous (re results in Table 7)
Main comments

- Rationale for RE: invariability of ownership concentration & BHC
 - Show it!
 - Why not use Herfindahl?
 - *Kripfganz & Schwarz (2015)*: estimation with time-invariant regressors
 - Interact BHC with other variables? For instance, if agency conflict higher for BHC, couldn’t this also be seen via interaction terms?
 - With FE presumably better able to control for certain things

- BHC = 84% of sample: Better to make distinction between BHC w/wo BD subsidiaries (*Acharya, Le & Shin (2016)*)?
- Not obvious binary model is better than continuous (re results in Table 7)
Main comments

- Rationale for RE: invariability of ownership concentration & BHC
 - Show it!
 - Why not use Herfindahl?
 - *Kripfganz & Schwarz (2015)*: estimation with time-invariant regressors
 - Interact BHC with other variables? For instance, if agency conflict higher for BHC, couldn’t this also be seen via interaction terms?
 - With FE presumably better able to control for certain things

- BHC = 84% of sample: Better to make distinction between BHC w/wo BD subsidiaries (*Acharya, Le & Shin (2016)*)?
- Not obvious binary model is better than continuous (re results in Table 7)
Main comments

- Rationale for RE: invariability of ownership concentration & BHC
 - Show it!
 - Why not use Herfindahl?
 - Kripfganz & Schwarz (2015): estimation with time-invariant regressors
 - Interact BHC with other variables? For instance, if agency conflict higher for BHC, couldn’t this also be seen via interaction terms?
 - With FE presumably better able to control for certain things

- BHC = 84% of sample: Better to make distinction between BHC w/wo BD subsidiaries (Acharya, Le & Shin (2016))?
 - Not obvious binary model is better than continuous (re results in Table 7)
Main comments

- Rationale for RE: invariability of ownership concentration & BHC
 - Show it!
 - Why not use Herfindahl?
 - Kripfganz & Schwarz (2015): estimation with time-invariant regressors
 - Interact BHC with other variables? For instance, if agency conflict higher for BHC, couldn’t this also be seen via interaction terms?
 - With FE presumably better able to control for certain things

- BHC = 84% of sample: Better to make distinction between BHC w/wo BD subsidiaries (Acharya, Le & Shin (2016))?

- Not obvious binary model is better than continuous (re results in Table 7)
Main comments (cont.)

- Dividend payouts shift relative value of stakeholders’ claims across firms as well as within (Acharya, Le & Shin (2016))
 - Risk-shifting incentives when franchise values are low
 - Interlocking balance sheets, bank capital as public good
 - Control for interconnectedness? (value of OTC derivatives)

- Control for funding structure, probability of bank support?
- Interpretation: avoid drawing insights from expressions like “variable X is borderline insignificant”
- Purpose of “dividend paid” regressions? Main insights come from “cut regressions”... (emphasize this in discussion of descriptives (re tables 4 & 5))
- Economics of H1+ H2
Dividend payouts shift relative value of stakeholders’ claims across firms as well as within (Acharya, Le & Shin (2016))

- Risk-shifting incentives when franchise values are low
- Interlocking balance sheets, bank capital as public good
- Control for interconnectedness? (value of OTC derivatives)

Control for funding structure, probability of bank support?

- Interpretation: avoid drawing insights from expressions like “variable X is borderline insignificant”
- Purpose of “dividend paid” regressions? Main insights come from “cut regressions” ... (emphasize this in discussion of descriptives (re tables 4 & 5))
- Economics of $H_1 + H_2$
Main comments (cont.)

- Dividend payouts shift relative value of stakeholders’ claims across firms as well as within (Acharya, Le & Shin (2016))
 - Risk-shifting incentives when franchise values are low
 - Interlocking balance sheets, bank capital as public good
 - Control for interconnectedness? (value of OTC derivatives)

- Control for funding structure, probability of bank support?
- Interpretation: avoid drawing insights from expressions like “variable X is borderline insignificant”

- Purpose of “dividend paid” regressions? Main insights come from “cut regressions” ... (emphasize this in discussion of descriptives (re tables 4 & 5))
- Economics of H1+ H2
Main comments (cont.)

- Dividend payouts shift relative value of stakeholders’ claims across firms as well as within (Acharya, Le & Shin (2016))
 - *Risk-shifting* incentives when franchise values are low
 - Interlocking balance sheets, bank capital as public good
 - Control for interconnectedness? (value of OTC derivatives)

- Control for funding structure, probability of bank support?
- Interpretation: avoid drawing insights from expressions like “variable X is borderline insignificant”
- Purpose of “dividend paid” regressions? Main insights come from “cut regressions” ... (emphasize this in discussion of descriptives (re tables 4 & 5))
- Economics of H1+ H2
Main comments (cont.)

- Dividend payouts shift relative value of stakeholders’ claims across firms as well as within (Acharya, Le & Shin (2016))
 - Risk-shifting incentives when franchise values are low
 - Interlocking balance sheets, bank capital as public good
 - Control for interconnectedness? (value of OTC derivatives)

- Control for funding structure, probability of bank support?
- Interpretation: avoid drawing insights from expressions like “variable X is borderline insignificant”
- Purpose of “dividend paid” regressions? Main insights come from “cut regressions” ... (emphasize this in discussion of descriptives (re tables 4 & 5))
- Economics of H1+ H2
Minor comments

- Not fully convinced about exclusion of SCAP/CCAR controls (control for SIFIs maybe?)
- H2 could be better substantiated by interacting other “agency conflict” proxies beyond ownership concentration
- Residual ownership & # analysts slightly differently defined than in Bodnaruk & Östberg (2013) & Hong et al. (2000); why?
- Sharpen storytelling, avoid forcing interpretations
- Highlight better difference from related literature (re Abreu & Gulamhussen (2013))
Minor comments

- Not fully convinced about exclusion of SCAP/CCAR controls (control for SIFIs maybe?)
- H2 could be better substantiated by interacting other “agency conflict” proxies beyond ownership concentration
- Residual ownership & # analysts slightly differently defined than in Bodnaruk & Östberg (2013) & Hong et al. (2000); why?
- Sharpen storytelling, avoid forcing interpretations
- Highlight better difference from related literature (re Abreu & Gulamhussen (2013))
Minor comments

- Not fully convinced about exclusion of SCAP/CCAR controls (control for SIFIs maybe?)
- H2 could be better substantiated by interacting other “agency conflict” proxies beyond ownership concentration
- Residual ownership & # analysts slightly differently defined than in Bodnaruk & Östberg (2013) & Hong et al. (2000); why?
- Sharpen storytelling, avoid forcing interpretations
- Highlight better difference from related literature (re Abreu & Gulamhussen (2013))
Minor comments

- Not fully convinced about exclusion of SCAP/CCAR controls (control for SIFIs maybe?)
- **H2** could be better substantiated by interacting other “agency conflict” proxies beyond ownership concentration
- Residual ownership & # analysts slightly differently defined than in Bodnaruk & Östberg (2013) & Hong et al. (2000); why?
- Sharpen storytelling, avoid forcing interpretations
- Highlight better difference from related literature (re Abreu & Gulamhussen (2013))
Minor comments

- Not fully convinced about exclusion of SCAP/CCAR controls (control for SIFIs maybe?)
- **H2** could be better substantiated by interacting other “agency conflict” proxies beyond ownership concentration
- Residual ownership & # analysts slightly differently defined than in Bodnaruk & Östberg (2013) & Hong et al. (2000); why?
- Sharpen storytelling, avoid forcing interpretations
- Highlight better difference from related literature (re Abreu & Gulamhussen (2013))
THANK YOU FOR YOUR ATTENTION!

✉️ Inaki.Aldasoro@bis.org